Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes.

نویسندگان

  • Florence Mousson
  • Annemieke Kolkman
  • W W M Pim Pijnappel
  • H Th Marc Timmers
  • Albert J R Heck
چکیده

Affinity purification in combination with isotope labeling of proteins has proven to be a powerful method to discriminate specific from nonspecific interactors. However, in the standard SILAC (stable isotope labeling by amino acids in cell culture) approach dynamic components may easily be assigned as nonspecific. We compared two affinity purification protocols, which in combination revealed information on the dynamics of protein complexes. We focused on the central component in eukaryotic transcription, the human TATA-binding protein, which is involved in different complexes. All known TATA-binding protein-associated factors (TAFs) were detected as specific interactors. Interestingly one of them, BTAF1, exchanged significantly in cell extracts during the affinity purification. The other TAFs did not display this behavior. Cell cycle synchronization showed that BTAF1 exchange was regulated during mitosis. The combination of the two affinity purification protocols allows a quantitative approach to identify transient components in any protein complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin interaction of TATA-binding protein is dynamically regulated in human cells.

Gene transcription in mammalian cells is a dynamic process involving regulated assembly of transcription complexes on chromatin in which the TATA-binding protein (TBP) plays a central role. Here, we investigate the dynamic behaviour of TBP by a combination of fluorescence recovery after photobleaching (FRAP) and biochemical assays using human cell lines of different origin. The majority of nucl...

متن کامل

TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability.

Eukaryotic mRNA transcription by RNA polymerase II is a highly regulated complex reaction involving numerous proteins. In order to control tissue and promoter specific gene expression, transcription factors must work in concert with each other and with the promoter DNA to form the proper architecture to activate the gene of interest. The TATA binding protein (TBP) binds to TATA boxes in core pr...

متن کامل

The RNA polymerase I transcription factor, upstream binding factor, interacts directly with the TATA box-binding protein.

The accurate transcription of human rRNA genes by RNA polymerase I requires two transcription factors, upstream binding factor (UBF) and promoter selectivity factor (SL1). Human SL1 (hSL1) is a multisubunit complex, one of whose components is TATA box-binding protein (TBP). hSL1 binds to the core region of the rRNA promoter, but does so inefficiently in the absence of human UBF (hUBF). hUBF int...

متن کامل

Sequence-dependent solution structure and motions of 13 TATA/TBP (TATA-box binding protein) complexes.

The TATA element is a well-known example of a DNA promoter sequence recognized by the TATA box binding protein (TBP) through its intrinsic motion and deformability. Although TBP recognizes the TATA element octamer unusually (through the minor groove, which lacks the distinctive features of the major groove), single base-pair replacements alter transcriptional activity. Recent crystallographic e...

متن کامل

TBP dynamics in living human cells: constitutive association of TBP with mitotic chromosomes.

The recruitment of TATA binding protein (TBP) to gene promoters is a critical rate-limiting step in transcriptional regulation for all three eukaryotic RNA polymerases. However, little is known regarding the dynamics of TBP in live mammalian cells. In this report, we examined the distribution and dynamic behavior of green fluorescence protein (GFP)-tagged TBP in live HeLa cells using fluorescen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2008